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Surface hardening and self-organized fractality through etching of random solids
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When a finite volume of etching solution is in contact with a disordered solid, complex dynamics of the
solid-solution interface develop. If the etchant is consumed in the chemical reaction, the dynamics stop
spontaneously on a self-similar fractal surface. As only the weakest sites are corroded, the solid surface gets
progressively harder and harder. At the same time, it becomes rougher and rougher uncovering the critical
spatial correlations typical of percolation. From this, the chemical process reveals the latent percolation criti-
cality hidden in any random system. Recently, a simple minimal model was introduced by Sapal/dab
describe this phenomenon. Through analytic and numerical study, we obtain a detailed description of the
process. The time evolution of the solution corroding power and of the distribution of resistance of surface sites
is studied in detail. This study explains the progressive hardening of the solid surface. Finally, this dynamical
model appears to belong to the universality class of gradient percolation.

PACS numbeis): 64.60.Ak, 81.65.Cf, 68.35.Bs

I. INTRODUCTION lation properties of random systems. In that sense this kind
of corrosion reveals a “latent” criticality embedded in any
Corrosion of solids has major economical consequencegndom system.
[1,2]. It is also interesting from the point of view of theoret- ~ The model reproduces qualitatively the same phenom-
ical physics of random systeni3—7]. enology observed experimentall§]. The dynamical evolu-
The comprehension of the basic physical mechanisms irfion can be divided into two different regimes.
volved in corrosion implies the study of the dynamical evo- (i) In the first(smooth regime, the corrosion is well di-
lution of the corrosion process and that of the morphologicarected and the front becomes progressively rougher and
features of the corroded surface. rougher. In our model this regime does not depend on the
This paper presents a detailed study of a minimal modefletails of the di.scretization chosen, nor even on the funda-
inspired by recent experiments on pit corrosion of aluminundmental geometrical features of the lattice, such as the embed-
thin films by an appropriate etching solutip8]. This two- ding_ space dimension or the lattice coor_dination number.
dimensional model is a simplified etching model. It was first (i) In the second regime, the correlations revealed by the
introduced in[9], where a preliminary numerical study has hardening process become important: the dynamics becomes
been developed. It provides a simple description for the aclocally isotropic generating a fractal front. This corresponds

tion of a finite volume of a corroding solution on the surfacet0 a critical regime, directly related to the static percolation
of a disordered solid. transition on the same lattice.

When an etching solution is in contact with an initially The hardness of the final interface, which is related to the
flat surface of a disordered solid, it starts to corrode its weakfinal corrosion power of the solution, depends on the external
est regions and the surface gets “harder.” However, at thdarameters such as the volume of the solution itself and the
same time, new regions are discovered which contain weafystem size. When the volume of the solution is not too
elements. Depending on the corrosion reaction mechanisnf2fge, one observes a geometrical scaling regime. This re-
different situations for this hardening process can occur. gime corresponds to the scaling regime of a static percolation

Often the corrosive power of the solution is proportionalMmodel known as “gradient percolation.” When the volume
to an etchant concentration. If the etchant is consumed in thi§ increased, the correlation length grows to reach the system
reaction, then the corrosive power ofiaite volumeof solu- ~ Size. Above this limit, the finite-size effects dominate the
tion decreases during the time evolution of the process. ABehavior, and we do not study this case here.
the solid surface gets “harder and harder,” and the corroding
power of the solution gets “weaker and weaker,” the corro- II. MODEL
sion process stops spontaneously in a finite time interval. At
this moment all the surface sites are “too hard” to be etched We first recall the two-dimensional etching model intro-

by the solution. duced in[9]. Its schematic is shown in Fig. 1.
It is this phenomenon which is studied both numerically (i) The solid is represented as a site lattftgangular or
and analytically in this paper. squarg, of linear widthL and, eventually, infinite depth.

A most interesting aspect of this kind of dynamical cor- (ii) A random number; €[0,1] (extracted from the flat
rosion is that the final surface has a fractal geometry, showprobability density functionmo(r)=1 for r €[0,1]) is as-
ing that the corrosion mechanism itself uncovers the spatiadigned to each solid site representing its resistance to the
correlations among the strong sites belonging to the solidetching by the solution.r; does not depend on time
This is why this phenomenon is intimately related to perco-{quenched disordgnor on the site environment.
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FIG. 1. Sketch of the etching dynamics in a square lattice: the
sites 2,3,5 are etched at the first time step as their resistances are
lower thanp(0). Consequently, the number of etchant particles in
the solution decreases by three units. tAtl, the new interface FIG. 2. Typical process represented at two intermediate time
sites are 7,8,10 if the solution can etch only the first-neareststeps and at the final one. The solid is represented in gray, the
neighbor solid sites, or the whole second layer if the solution carsolution in white, and the finite-size solid clusters detached by the
also etch the second nearest neighbors in a diagonal direction. solution in black. The final solid surface is found to be fractal up to

a characteristic scale.

(iif) The etching solution has a volunveand is initially in

contact with the solid through the bottom boundesge Fig. Some finite solid clusters are detached from the “infi-
1). It contains an initial numbelN¢(0) of dissolved etchant pjte” solid by the corrosion process. Consequently, at any
molecules. time, the “global surface” of the system is composed by

Consequently, the initial concentrati@{0) of etchantin  poth the finite clusters surfaces and the surface of the infinite
the solution is given byC(0)=N¢{(0)/V. Calling Ne(t) the  solid, which will be called the “corrosion front.” Note that,
number of etchant molecules at tirhe C(t) =Ne(t)/V. At in order to have a meaningful geometrical and physical defi-
each time step, the “etching power” of the soluti@re., the  pition of the solution space and of the connected solid re-
average “force” exerted by the solution on a solid SUrfacegionS (and then of the corrosion fro)’,]tone has to use the
particle is supposed to be proportional t6(t): p(t)  so-called “dual”’ connection rules for solution and solid, re-
=I'C(t). Hereafter the assumption=1 is made, without spectively[10]. For example, on the square lattice, if the
loss of generality. It implieC(t)=p(t). At time stept, all  solution etches both first and second nearest neighbors, only
the interface sites with;<p(t) are dissolved and a particle first-nearest-neighbor solid sites should be considered as
of etchant is consumed for each of these corroded solid sitegonnected. On the other side, if the solution etches only the

Let us calln(t) the number of dissolved solid sites at time first nearest neighbor, both first- and second-nearest-
t. One can express many important dynamical quantitiedeighbor solid sites should be considered as connected. On
throughn(t), or its time integraN(t), that is, the total num-  the triangular lattice, if the solution etches first nearest neigh-
ber of corroded solid sites up to time The number of bors, liquid and solid sites are considered to be connected

etchant particles in the liquid will decrease as both by first nearest neighbors only.
Two remarks should be made.
Nedt+1)=Neg{t) —n(t)=Ng(0) = N(1), 1) (i) The corrosion front stays quite smooth at the beginning
of the dynamicdfirst snapshot of Fig. 2 It becomes very
and consequently the etching power of the solution is irregular only towards the end of the dynamigisird snap-
shot of Fig. 2 whenp(t) is close to the percolation threshold
n(t) N(t) p. on the same latticE9].
p(t+1)=p(t)— 7~ =P(O0) =~ 2) (i) The “active” part of the global surface is essentially

restricted the etching front, since a site having resisted the

Note that, ap(t+1)<p(t), a site having resisted to etching corrosion at a certgin time step will resist. forever. .

at a certain time step will resist forever. Consequently, the These observations are useful for a first analysis of the
part of the solid surface which can be etched at time step dynamics. Roughly speaking, if the front advances linearly,
+1 is restricted to the sites which have just been uncovere® number of solid sites discovered at each time step is
by the etching process at timieWe call this subset of sur- (the number of sites in each layeHence, in this approxi-
face the “active” part of the surface. After a given time step, Mation, the number of etched sitesrigt) =L p(t). Using

all the solid sites which have been previously explored bythis approximation one gefsrom Eq. (2)]

the solution are definitely “passive.” However, it may hap- L L\t

pen that “passive” sites are disconnected from the bulk at a p(t)=p(t— 1)( 1— _) - p(O)( 1— _) ) 3
later time step if they are connected to the solid by weak \% \

sites.

This simple prediction is compared with the actual simula-
tion behavior ofp(t) in Fig. 3. The agreement between the
A typical process at two intermediate times, and at thesimple prediction 3 and the initial decay p(t) is very good

final time step, is shown in Fig. 2. for valuesp(t)>p., i.e., in thesmooth regimeof the dy-

A. Phenomenological description of the dynamics
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. . . . side. A sitei is occupied ifr;<<p(y). The occupied and empty sites
FIG. 3. Decay of the corroding powpl() in a triangular lattice are represented, respectively, in gray and white. Apart from isolated

with g(o'%h:tﬁ The nlumﬁncal evo'Tt'O.n gpb(t.) (fOHd Iflne) 8 cor:n;j islands and lakes, gray and white sites form two distinct connected
pareg wi € simple phenomenologic dervation o €(das e“ ...regions. The bold line represents the separation between these two
line). When the two curves separate, the dynamics enters the “criti-

: . - regions.
cal regime” dominated by percolation effects. 9

dimensionD{®"=1.75 up to a finite lengthfront width

namics. Whemp(t) is close top,, this approximation is no T .
() De bb ogp) Which is a power law of the local gradieRNtp= 1/h:

longer valid and the dynamics enters tirétical regime
A better derivation of Eq(3), and a more precise defini- _4(GP)

tion of the two regimes, will be given below providing a oee~[VP] %, )

deeper insight into the critical regime of the.dynam|cs, whenv(\:1here «CP—057 Note that Dg@p): 7/4 and P

the surface becomes fractal and the dynamics slow down an P’ ) . p. 7

stop. =1/D;”". For t_h|s reason it was assumed tﬁ)ﬁ is equ_al_
Note that the main hypothesis for the derivation of Bj. to the fr_actal dlmenilgn of _the hull of .the incipient infinite

consists in assuming that at each time step the number &ercolating clusteDy=7/4 in percolation th_eor;[lS,la;.)

new sites checked for corrosion is alwaysi.e., the whole ~The d(%rgqnstratmn of the identity of the equivalentagf

next solid layer. This is possible if the etching does not leave= /D¢~ in percolation theory is given ifi3].

large connected segments of uncorroded sites. In fact, it is In addition, the occupation probabilities of the front range

easy to show that the nonetched sites, the number of which i§ an intervalp(y) =p,=Ap, whereAp scales with the gra-

approximatively[1—p(t)]L, are almost isolated, the aver- dient as

age size of a segment of “survived” sites being) (6P

=1/p(t). Ap~[Vp]% . )
Interestingly, the present phenomenological approach (GP) (GP) ,

suggests an analogy between our dynamical etching modéine xponent,™"is related tow,,”*, asAp~o Vp, which

i GP)_ GP
and a static percolation model known as gradient percolatiofnplies, from Eq.(4), af )—_ 1- ", _ _
[9,11]. This will be discussed next. Because of its characteristic properties, GP has provided a

powerful method to compute percolation threshpld 14].
In this model, one can associate for each corroded site
(x,y) the valuep(x,y) of the solution etching power at the
The gradient percolatiofGP) problem[11,12] can be for-  time of corrosion of that sit¢9]. In this way, a position-
mulated in the following way: a random numbee[0,1] is  dependent “field” of occupation probabilitieby the solu-
assigned to each site of a lattice>osizeL andy sizeh. A tion) is spontaneously generated. This is the physical link
constant gradient of occupation probability in theirection  with GP. In the smooth time regime the successive active
is then imposed on the latticgp(y)=1—y/h=1-yVp.  zones are consecutive solid layers containing ahosites.
The occupation rule is that in each column a site occu-  Consequentlyp(x,y) depends only oy [p(x,y) =p(y)].
pied if and only ifr;<p(y) (see Fig. 4. The “active” zone at timet is then the whole layer at
In the first column y=0) the occupation probability is 1, depthy=t. From Eq.(3) one can then write
while in the last one {{=h) it is zero. These two special
layers individuate two percolating clusters in theirection y
of occupied(gray) and empty(white) sites(Fig. 4). The ex- p(y)= p(O)( 1- V) : ©®
ternal frontier of the connected occupied cluster is called the
gradient percolation fronf11]. This front is centered around This equation defines self-organized gradient percolatipn
the layer withp(y) equal to the critical percolation threshold where the value of the gradient depends on the pararheter
p. characteristic of the lattice type. The front is fractal with aandV as

B. Analogy with gradient percolation (GP)
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with «,=0.57£0.02. This confirms the idea that the final
features of our dynamical etching model, at least in this
range ofL/V, are in the same universality class of GP once
the identificationL/V~Vp is done, i.e.a,=a{®P.

(ii) Decreasindg.-/V, o increases following the previous
scaling behaviofEq. (8)] until reaching values of/V for
which o=L. For even smaller values df/V, a deviation
from the aforementioned scaling law is observed. This devia-
tion is characterized by a crossover to a region dominated by

boundary effects. In this regime seems to decrease slowly

Extensive simulations have been performed, consideringogether with the gradierit/V, instead of increasing.
triangular and square lattices, with first-nearest-neighbor (iii) Consequently, for a fixed value &f one can distin-
(fnn) and second-nearest-neighlisnn (diagonal connec-  guish a “strong gradient” process, i.e., for valueslg¥ in
tions for the corrosion process. All simulations start withwhich Eq. (8) holds, and a “weak gradient” process for
Po=1>p in order to observe clearly the transition towardsvalues ofL/V smaller than the crossover value. The cross-
a critical regime, whem(t)=p.. Oncep, is fixed, the pa- over between the two behaviors is marked by a marginal
rameter measuring the initial corroding “force” of the solu- yvalue ofL/V for which o=L. Note that for this value af/V

tion is V=N{0)/p,. The other fundamental parameter is thethe spatial correlations extend all over the sample. Then this
transversal size of the solid All the data presented below s a kind of “critical”value of L/V.

refer to 1000 different realizations of the quenched disorder, Moreover one observes thigt;)<p. in the strong gradi-
for each choice of the parametdrsand V. ent regime andp;)>p, in the weak gradient regime, where
(---) means an average over different realizations of the
disorder with fixed parametets V. In this way the equality

) - i (ps)=p can be used to identify the margin@icritical” )
In order to quantify the statistical properties developed bX/aIue of L/V for a fixed value of..

the dynamical process, the average thickness of the final cor- |, ihe upper diagram of Fig. 5, the transition between the
rosion front is measured. {fy;} are the depths of the points 1,5 regimes forL =500 is shown. This transition corre-
i belonging to th(_a corrosion front at tineits average thick- sponds to a value df/V=2x10"5 (marked by the double
ness can be defined as arrow crossing the two ploxs
1] 1 > This behavior ofo allows us to sketch a kind of “phase”
o= \/_ 2 Yi2_<— 2 Yi) , diagram for our model in thel(,VV) parameter spadgig. 6).
i=1 = The “critical” line o=L separates the two “phases.” Here
we use the terminology of phase transitions because in GP
wherel is the length of the corrosion front.
The behavior of the final value at timet; as a function

of the “natural” gradientL/V is shown in Fig. 5(bottom)

the correlation length is equal to the front widih
Since in the strong gradient “phase” E¢B) holds, the
for different fixed values of.. Several observations can be
made.

scaling relation for the marginal line is
(i) First, for sufficiently large values df/V (right side of
Fig. 5), o follows the scaling behavior

A. Correlation length and “phase” diagram

vaaa./l-*— a;

(€)

The relevance of this relation with respect to the extensivity
of spatial correlations in the “thermodynamic limit” is dis-
cussed in Appendix A. In the following, we deal only with

o~ (L/V) 8
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v=L/o of almost independent regions is relevant for the study of 10
extremal quantitie15].

the strong gradient regime, leaving the detailed analysis of . . .
the weak gradient regime to further work. 107° 107 107 107° 1072 107"

B. Strong gradient etching FIG. 9. Scaling behavior of the average number of sites per

In order to study this regime, we focus on simulations of¢0lumn in the final corrosion front.
sizesL = 3000 andL =5000, with(p;)<p.. Such values of i )
L are large enough, and at the same time they permit us to Moreover, t_he average nl_meer of corrosion front sites per
collect large statistics. A typical corrosion front is presentedcolumn(see Fig. 9(I(t;))/L is found to follow a power law
in Fig. 7, where the conditioh> o is emphasized. Note that ©f the form
on scales larger tham, the corrosion front is almost flat.

This indicates the statistical independence among nonover- () N(E) R _ ,

lapping regions of the surface of linear size larger than L \Y with  a,=0.450.02. 1
As mentioned earliefg is described by Eq8). Similar to The fractal dimensio®; of the corrosion front was mea-

o, other important properties follow simple scaling relationssured(up to the scaler) using the box-counting16] algo-

with the gradient/V [9]. rithm. In this wayD;=1.753+0.005 is foundsee Fig. 1D
The distance of the average val(e;) from p. follows  Note that it is compatible with the value 7/4 of GP.

the scaling law: In the early papers about this etching proc¢8s D;

L\ =1.62 was measured. This different value was due to finite-
_ = ; _ ., size effects. The present simulations are almost 400 times
Pe=(Pr) (V) with a,=0.46=0.02 (10 larger than those ppreviously reported 8] (the largest value
of the parameters being=3x10* and V=5x10%. This
as shown in Fig. 8. Appendix A discusses the possibility ofachievement is important to assert that the exponents char-
obtaining a value of p;) arbitrarily nearp,, remaining in acterizing the final corrosion front belong to the universality
the “strong gradient” region of Fig. 6. Starting from a class of gradient percolation. Whi{g@) depends on the lat-
couple (Lg,Vo) in the strong gradient phase, one can obtairtice geometry, ap. changes, the values of the exponents
it, for instance, performing the limiy—% on any line remain the same.
(L/Lg) =(VIVg)® with o, /(1+ a,)<a<l.

. 20 . o Box Counting |
10 —— D=1.75
15 |
A @
10
Qo 10° %
A IS
o
o L=3000 5|
o L=5000 0t
P<P >~ (LV)
o 1 1
\ 0 2 4 6 10
19407 10° 10* 10° 10° 10' In(e)

FIG. 10. Box-counting determination of the fractal dimension
FIG. 8. Scaling behavior gf.—{p;). Note that, identifyind-/V D; of the corrosion front. The value &;=1.753+0.005 is found
with Vp of gradient percolation, one obtains the same values of thditting for values ofe ranging from a few lattice distances to the
exponenta,=0.46+ 0.02. front width o [in this cases~ 3000, i.e., In{)~8].
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10° o <t> . (t)—=(te)~(LIV) " " with a ~0.55. (13
<t>~(LV) However, for(t;)—(t.), a further dependence dnis ob-
.| tained (see the inset of Fig. 32In particular, changind-
with L/V fixed, the quantity(t;)—(t.) is found to depend
linearly on InL. This behavior is connected to the “extrem-

/\0103 al” nature oft; and is not studied herd 5].
v
C. Scaling relations
10° The exponentsy,,, «,, @, andD; are not indepen-
dent. At first, note that, within the present numerical preci-
sion,
10' L - = 3 . a 1
10 10 10 10 10 10 -
A== (14
Y 7 Dy
FIG. 11. Scaling beﬁaavior_ of the critical timg for which a5 jn GP[11].
P(t)=Pc:  (te)~(L/V)™ % with & =0.998-0.001. Identifying the width o with the horizontal correlation

length, the average number within a correlated region scales

Nevertheless, note that the measured fractal dimension gf ;01 hecause of the fractality on smaller scales. Since the
the corrosion front can be reduced3oif one does not use yrizontal size of the solid ik, the average number of dis-

the right “dual” connectivity criterion introduced above. inet correlated regions will be/o. Consequently, one can
This is the so-called Grossmann-Aharony effect in percolay,ite

tion [12,17]. This effect can explain the reduced fractal di-
mension(4/3) measured in the real corrosion experiments L
[7], due to insufficient image resolution. For example, on the (I(tp)~ ;ODf,
triangular lattice(where the solution etches only fprif the
resolution does not distinguish first and second nearesfhich implies
neighbors, the measured fractal dimension is 4/3.
The average critical timé;, defined byp(t,)=p., and (I(tp)y o, (L) %@
the difference between the arrest tilpef the dynamics and LY,
t. itself, are measured for different values of the gradient
L/V. For the first one, the following simple behavior is found From Eqs(11), (14), and(15) one then obtains the following
(see Fig. 11 scaling relation:

(15

(to)~(LIV) . with @, =0.998=0.001. (12 D1
alzaU(Df_l): Df ’

(16)
As we shall see in the following, this is a direct consequence
of the linear properties of the smooth dynamical regj&@.  which is consistent with the measurementagfin Eq. (11).

3] Exploiting the analogy betwedr/V and the gradien¥ p
Finally, for t; one hagsee Fig. 12 in GP, another interesting relation among exponents can be
derived. From the relatioAp=p.—p;=~Vp- o, one gets
4
10 o L=3000 D—1
o L=5000 ap=1l-a,= D, (17)
_____ - (L/V)—O.55
Note that this impliesy,= @, in d=2. In fact, the assump-
10° q, tion that the number of different correlated regions scales as
A Ry, L/o is valid only ind=2.
Y 900 TRy
../_\1'- ../_\-" 700 ﬁ%:@ IV. DYNAMICAL EQUATIONS AND THEORETICAL
Vel RESULTS
../_\7- 500 . . . L
\ In this section we present an analytical derivation of the
300 L . . s dynamical evolution op(t) and the distribution of the sur-
10° 10" L10° 10 face resistances. This time-dependent distribution character-
10110_6 pre e pre e izes the evolution of “hardening” properties of the surface.

LV To this aim, the histograr(r,t) is introduced. The quantity
h(r,t)dr measures the number of global surface sites with

FIG. 12. Scaling behavior df)—(t.) for different values ot.. ~ random resistance in the intervl,r +dr] at timet. By
Inset: the dependence anfor L/V fixed is presented. definition, the number of sites in the global surfagét) is
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simply the total integral of the histogram: Equation(24) and the initial conditiorh(r,0)=L imply that
at each time for<p(t—1), h(r,t) is independent of and
1 .
G(t)=j h(r tydr. (1g can be written as
0 t—1
On the other side, the number of surface sites being corroded ~ h(r,t)=L H (o(t")p(t’)) for r<p(t—1). (25
at timet by the solution will be r=0
o(t) Using this expression in Eq20), the following equation is
n(t)=f h(r,t)dr, (19 obtained:
0
L t—1
asn(t) is the number of sites in the global surface with t+D=p(t) 1—- = ot pt'N | 26
<p(t). Note that Eq.(19) links h(r,t) directly to p(t) pt+1)=p(t Vt[[o (w(t)p(t")) @9

through Eq.(2), which can then be rewritten as
Equation(26) makes evident the strong dynamical link be-

p(t) tween the geometrjw(t)] and the chemistryp(t)] of the
h(r,t)dr system
p(t+1)=p(t)- —— (20) In order to examine the calculations further, it is neces-
sary to make some hypotheses on the behavias (5.
Let us callm(t) the number of active sites at time-1: i.e., As previously mentioned, the dynamical evolutions can

the new sites entering the global surface as a consequencef divided into two regimesi) a firstsmooth regimewhich
the corrosion of the set of(t) sites. Then the sen(t) is the IS referred to the time scale at whigift) is larger tharp,;
active zoneat timet+1. One can define(t)=m(t)/n(t). (i) a secondcritical regime which is referred to the time
Therefore,w(t) is the number of new active sites per etchedscale at whictp(t)=pc. o o

site at timet. As shown below, the quantity(t) is the This partition of the_dynamlcs into two regimes is directly
fundamental parameter relating the “geometry” to the connected to percolation theof$0], as shown below.
“chemistry” of the system at time. At each time step one

can write A. Smooth regime
G(t+1)=G(t)—n(t)+m(t) (21) If one considers all the lattice sites with<p(t) for
' p(t)>p., they form both a set of a few finite-size clusters
or, using both Eq(19) and the definition ofu(t), and an infinite percolating and homogeneduost fracta)

cluster[10]. Consequently, the intersection between the glo-

p(t) bal solid-solution surface and this set is made of a large
G(t+1)=G(t) +[w(t)—1] fo h(r,tydr. (220 number of sites. The largex(t), the larger the intersection.
This intersection is merely the set oft) sites to be dis-

Considering only sites ifir,r +dr], one can write solved at that time step.
Since n(t)>1 [and thenm(t—1)>n(t)>1 alsd, one
h(r,t+1)=h(r,t)—h(r,t)o[p(t)—r] can use the law of large numbers to relafe) to m(t—1):
p() n(t)=pt)m(t—1). 2
0

For the same reason one expects small fluctuations around

where 6(x) is the Heavyside step function. In E¢3), the  these values. From E¢27) and the definition of(t), one
second term on the right-hand side represents the number 8ptains
sites etched at timg[a surface sité is etched with probabil-
ity 1 if r;<p(t)]. The third term is the contribution to(r ,t) m(t)=w(t)p(t)m(t—1). (28)
due to the new active zone. It is based on the fact that each . ) .
new site has completely random resistance to etching; thBecause of the percolation properties forp., which are
probability that it belongs to the intervd,r +dr] is simply ~ 'elated to the previous argument, one expects
dr [as mp(r)=1]. In principle, knowing the behavior of
w(t), one can solve the system given by E(0) and(23), ’m(t)—m(t— 1)‘ <1
characterizing in this way the dynamical evolution of the m(t—1) '
corrosion power and of the resistance of the solid surface.
Before going on with calculations, it is important to ob- Hence we obtain the relation
serve thah(r,0)=L Vre[0,1] [aswy(r)=1 and the initial

surface is a layer of sites of length. On the other hand, for 1
r<p(t), Eg. (23 reduces to w(t)= p(D)" (29
h(r t+1)=w(t)fp(t)h(r’ tydr’. (24)  This equation introduces an important relationship between
' 0 ' the fundamental “chemical” parametg@(t) and the “geo-
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metrical” and “dynamical”’ paramete(t). Inserting Eq.
(29 into Eq.(26), one recovers Eq3), which can be rewrit-
ten as

t
p(t)= p(O)eXp( - ;) (30)
with 7= —1/In(1-L/V)=V/L (L>V). From Eq.(30) one has
te=V/L In(po/p)~(L/V) L. This confirms the numerical re-
sult found in Fig. 11 and expressed by EfR). Note that the
behavior given by Eq(30) is independent of the space di-

mension and of the coordination number of the lattice. This 12 [ e

behavior is, however, valid only up to the time at which
p(t)=p.. After this time the hypothesis to deduce Eg0),
and in particular the possibility of using the law of large

numbers, breaks because of the geometrical constraints given
by the percolation properties of random numbers on a lattice.
Using Eq.(30), one can derive rigorously the shape of

h(r,t) at any time step or of its normalized versiowp(r,t)
[i.e., fdr ¢p(r,t)=1]. ¢(r,t) is obtained by dividind(r,t)

by G(t). Technical calculations are reported in Appendix B.

We provide here directly the result

G(r,t)= (1)
1

. for r<p(t)

1— %[m p(0)—Inr] for p(t)<r=p(0)

1 for r=p(0),
(31
where
[p1(1)]~*=1+[p(0)—p(t))/In(p(t)/p(0))

T

=1 -p(0)[1—exp~t/7)]. (32)

Equation(31) can be rewritten, in terms qf(t) instead oft,
as follows:

G(r,t)= (1)

% for r=p(t)
X In(r/p(0)) e
_W for p(t)<r<p(0)
1 for r=p(0).

(33

B. Critical regime

For p(t)=p., one has(in the limit L—c) a marginal
critical case in which the set of lattice sites with<p(t)
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FIG. 13. Comparison betweea(t) (dot9 and 1p(t) (thick
line) as functions of time.

not empty, it becomes depleted after a finite number of time
steps. The average number of time steps after which the dy-
namics stops will be a function of the system parameters
andV [Eqg. (13)]. At this time the corrosion dynamics stops
because the intersection between the global surface and the
set of lattice sites witl<p(t) is empty. This explains why
the final corrosion front is fractal with a fractal dimensibn

and a characteristic sizéhicknes$ o. D=7 is the hull
fractal dimension of the finite clusters formed by the lattice
sites withr <p(t;) and o is the characteristic size of these
clusters. Finally, the same argument explains why each ex-
ponent, characterizing the above introduced scaling relations
(apart from those about andt;), is directly connected to
the exponents of GP.

From the above argument, it is important to note that, if
not empty, the active zone at a tinne t. is composed of a
small and fluctuating number of site¥t). This implies that
alson(t) is small and strongly fluctuating. Consequently, the
arguments developed in dealing with the smooth time re-
gime, based on the law of large humbers and small fluctua-
tions, are no longer valida(t) becomes a strongly fluctuat-
ing quantity. These critical fluctuations are related to the
fractal morphology of the critical phase of percolation. We
can say that the arrest of the etching dynamics is due to one
of these big fluctuations ab in which no site of the active
zone hag <p(t).

All these features are shown in Fig. 13, whes&) and
1/p(t) are shown as functions of time. It is important to note
that, whereasw(t) is a strong fluctuating quantity in the
critical time regimep(t) is always smooth. In facp(t) can
be written[Eq. (2)] as

t—1

2 n(t).

1
PO=p(0)~ 3

form finite-size clusters of any size and an infinite fractalConsequentlyp(t) can be seen, apart from prefactors, as the

percolating cluster. Finally fop(t)<p., the set of lattice
sites withr<p(t) forms only finite-size clusters. For this
reason, even if at such timethe intersection between the
global solid surface and the set of lattice sites withp(t) is

time integral ofn(t), which is a limited function of time and
thenp(t) is continuous. Moreover, Fig. 13 shows that in the
critical time regime the equality(t) =1/p(t) is valid only
“in average:”
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1 metrical constraint The solutionp(t) obtained by solving
w(t)= (D)’ (34 numerically Eq.(26) is very near topg(t) itself.

Because of the strong fluctuations, the purely analytical
wherew(t) means the average af over a sufficiently large  Study of this critical regime is difficult. For this reason we
time interval around in the critical time regime. In order to developed only an approximated mean-field approach by im-
justify the smooth behavior ob(t) in spite of the fluctua- POSINg only the geometncal constraint with the following
tions of w(t), one can use E¢26). In the continuous time SiMple approximation:
limit, it can be rewritten as

w(t)=1/p, (39
dp(t) L t e . . . . ,
———=—_p(t)ex J dt’[Inp(t)+Ine(t)]|. in this critical time regime. This is a kind of mean-field ap-
dt \4 0 proximation as the fluctuations af(t) are neglected. Insert-

(35 ing the relation(38) into Eq.(26), one can write

Since the fluctuating(t) appears in the integral term of the
exponential of the right-hand side of E(5), one expects p(t+1)=p(t)
p(t) to be regular. L

In order to understand why one hagt)=1/p(t) also in
the critical regime, one has to analyze the behavior of tim

L t—-1
1= 11 p(t')l (39)
t'=0

é(vith the initial conditionp(t.)=p. andt>t.. In order to
solve EQ.(39), one can consider the continuous limit which

average, is equivalent to takingo(t) = 1/p. in Eq. (35):
1 t+At/2
t)=— t'). dp(t) L to . p)
o(t) At t’:gAtlz (t’) T=—vp(t)ex jodt In 0. )| (40

Using the definition of(t), one can write This equation can be solved exactly, and this solution is well

1 A mit’'—1) m(t’) approximated by
o ):E ; - 1 (36
t'=t-atz | N(t") m(t'—1) 2L
ex —(t—ty) | —1
From Eq.(27) one has directly 2L \%
Pc— p(t) =Pc N, , (4]
t+At/2 V 2L
2 [m(t"—21)/n(t")]=1/p(t). exp( \/—(t—tc)) +1
t'=t—At/2' \Y

From this observation and supposing that the quantityvheret, is the time at whichp(t)=p.. From Eq.(41) we
m(t’)/m(t’—1) oscillates symmetrically around 1, one ex- can see that in the— limit one has
pects Eq(34). Before proceeding, it is worth noting that the
variation ofp(t) during the critical time regime, as shown by \F
Eqg. (10), is very small. From this one has approximatively Pe™Pr~ V2 (42
w(t)=1/p.. (37) In spite of the rough approximation, we obtain a good ap-
proximation of the numerical result of EGLO) (see also Fig.

Equations(34) and(37) are very important because they pro- g) - therefore this “mean-field” result provides a good
vide both a “physical” and a “geometrical” meaning to the approximation.

critical threshold of percolation in a given latti¢en analo- Moreover, since the time constant of E(l) is 7’
gous relation for invasion percolation was found 18,19). ~ JVIL, it is argued that the average tinteat which the

~In order to clarify the geometrical effect om(t), it is  gynamics spontaneously stop obeys the following scaling
important to observe that, following ER9) and Eq.(30),  |gw-

w(t) would increase to infinity. Clearly this is not possible in

a finite dimensional lattice with a finite coordination number. \V
For instance, in a @ site square lattice with fnn connection, ti—te~7' \[E
o must always be smaller than 3. Moreover, as seen above,

the percolation theory introduces a stronger constraint fora|so, this is a reasonable approximation with respect to the
bidding p(t) to go well belowp.. Note thatp. is always  simulation behaviofEq. (13) and Fig. 12. We can see that
larger than the inverse of the coordination number of th$q.(42) can be interpreted as the product of the in single
lattice [10]. They are equal only in the Bethe lattice without time steps g p~L/V) multiplied by the average number of

loops. Consequently, in order to use ER6) to predict the {jme steps necessary to stop the dynanjest.~ VL.
behavior ofp(t), one has to take into account both the be-

havior given by Eq.(34) and these geometrical const_raintls. V. FINAL HISTOGRAMS AND SURFACE HARDENING

In order to show this, we have made the approximation

w(t)=1lpgsm(t) in Eq. (26), wherepg(t) is the simulation The surface hardening can be described by considering
outcome forp(t) (and then it includes automatically the geo- both the histogram of the global surface and that of the cor-
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FIG. 14. Normalized histogram of site resistances belonging to
the final global surface. Circles represent the result of numerical FIG. 15. Normalized histogram of the corrosion front resis-

simulations and the solid line the theoretical prediction detailed intances. One can notice that simple step functions are found for any
Appendix B. three different lattices studied. The discontinuities occur very near

the percolation thresholds.
rosion front. One first observes that the number of corroded
sites in the critical regime is much smaller than the numbenature. This could be called a random “Darwinian” selec-
of sites which have been etched in the smooth regime. Thition of a strong surface: once selected with a finite solution
means that the global surface is dominated by sites belongingith p>p., the surface resists for ever further etching with
to finite clusters. As a consequena(r,t;) is well approxi-  Po<<p. Whatever the volume of the solution.
mated by the linear regime behavior given in Eg§7) with

t=t; andp(t) =ps (see Fig. 14 VI DISCUSSION
One observes good agreement between theory and :
numerics. Several properties and limitations of this model should be

The global histogram describes the hardening phenongiscussed. This depends on the nature of what has been de-
enon of the global surface which includes finite-size clusterscribed here as a “site.” One can think of a site as being an
detached by the etching process at various time steps of th@om or a small group of atoms. For example, if one consid-
dynamics. The increasing behavior &{r,t¢) for r>pcis  ers a random solidsuch as a glagsthe different local ran-
due to the fact that the majority of surface sites belonging tqjom environments will cause random local rates for atomic
finite islands have been discovered at intermediate time steRgssolution rather than random probabilities. The possible
when p(t)>p.. This implies that their resistance is well application of the above model is then restricted to situations
abovep, . where the choice of suitable time intervals makes it possible

The hardening of the corrosion front is described by theo separate “very resistant” and “very weak” sites. This
normalized distributionpg(r) of site resistances. It has been implies a transposition of the distribution of local rates into a
measured by numerical simulation for several types of latdistribution of site resistances.
tices. The numerical results are shown in Fig. 15. But a site could also be a semimacroscopic entity like a

As discussed above, the final front is more resistant t&mall crystallite protected by a randomly resistive surface. In
etching than the original native surface. This is shown in Figthe case of corrosion experiments by Bal§8], it is be-

15, giving the histogram of the front resistances. In first ap4ieved that randomness may be attributed to the random na-
proximation it is a step function around=p.. This con-  ture of the oxide layer which spontaneously grows on previ-
firms the hypothesis, derived by GP, that the final corrosiorpusly etched aluminum crystallites. The disorder studied
front corresponds to the hull of percolation clusters with herein occurs if the random resistances to etching appear just
=Ps. after oxidation of newly discovered crystallites. Although the

This effect could possibly be used practically in wastedisorder appears dynamically, once created it is quenched.
management problems. Consider, for instance, a system con- |t is worth noting that a different kind of process would
taining dangerous compounds with random resistances tead to the same description. Consider, for example, a case
etchants present in the environment. If in natural circum-where crystallite oxidation and corrosion are two possible
stances it comes in contact with etchants, even with a weafsrocesses in competition when a site is uncovered. If the
etching powemy,<p., then dangerous materials can be dif- probability p associated to the corrosion is proportional to
fused in the environment. the global etchant concentration, then a probability i

But one can think to apply to the system a previous etchshould be associated to oxidati¢and then passivationin
ing treatment withpy>p., in an artificially controlled situ-  order to decide the etching or passivation of a givenisige
ation. In this case the final surface contains only sites wittrandom number; is thrown. Ifr; is smaller tham, the site
r>p.. Then the treated surface will resist forever any fur-is corroded, otherwise it is defintively passivated. The
ther natural attack witlp<p., with no danger of leaks in numbers define a stochastic process which would give the
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same dynamical behavior. Of course the hardening propespect to external perturbatiorias, for example, fluctuation
ties would be different in that case. From a statistical point ofof the etching powep;) should be of interest.
view, it means simply that we can equivalently formulate our
model as a de'termlnlstl'c dynamlcs with quenched disorder or ACKNOWLEDGMENTS
as a stochastic dynamics without quenched randomness.
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a kind of “equilibrium” or static situation in which the dy-
namics is stopped. This static state is characterized by the In light of what was written about the “phase” diagram,
fact that the surviving interface sites have a resistance to thene can discuss the thermodynamic limit. Let us start with a
etching which is larger than the final valpe of the solution ~ couple of external parametersd,V,) in the strong gradient
etching power which is on the order of the percolation“phase” for which o(Lg,V,) <Ly, and negligible boundary
thresholdp, . effects. If one changels (horizontal size of the solidandV
An analytical description of the time behavior of the so- (volume of the solutionby satisfying the relation
lution etching powermp(t) and of the distribution of resis-
tances on the total interface has been introduced. This ana- L \Y;
lytical approach indicates why and how the dynamics can be L. —(
divided into two regimes. The first initial period corresponds 0
to a classical, or superuniversal, regime. It can be describe
with precision by a mean-field approximation. The secon
regime is a critical regime related to percolation criticality.
The final connected interface is constituted by a collection of
fractal interfaces up to a certain characteristic depth or scale o(L,V) o(Lg,Vo)
o. The fractal dimension is found to be very closeDg L Lo
=7/4. The differencep.— p; betweenp. and the final etch-

ing powerps and the widtho are both linked to the geo- je. the new system is geometrically “similar” to the old
metrical and external parameters characterizing the syste@he

via simple scaling relations. These properties can be simply | et us now study what happens changihg\() following
explained by relating the model to the gradient percolationthe relation

model: identifying the ratid./V between the size of the solid

and the volume of the solution with the gradiénp which L v)a
characterizes the scaling properties of GP. After this identi- . (—)
fication, it has been shown that our etching model belongs to Lo Vo
the GP universality class, and that the exponents can be ex-

plained through percolation theory. with a# a,/(1+a,).

An important result of this approach is the identification (i) If a>1, the system stays in the strong gradient phase
of the meaning op(t) as the inverse of the mean number of for any value ofV, buto(L,V) is a decreasing function &f
new interface sites uncovered by each etched site. This ide@nd in the thermodynamic limit— <), the final corrosion
tification in particular is very important in relation to the frontis “microscopically” flat.
static final situation in whictp(t)=p., as it provides the (i) If @5/(1+a,)<as1, the system stays in the strong
physical meaning of the percolation critical threshold. gradient phase. Moreover(L,V) increases withV (it is

Several further developments of these studies can be sugpfinite in the thermodynamic limif but o(L,V)/L
gested. The statistics of other observable quantities, such aso(Lg,Vo)/Lo. Hence the new corrosion front is not *simi-
the arrest time of the proces$s or the maximal depth at- lar” to the old one, and in the limi¥/— < it becomes “mac-
tained by the solution, can be studied and related to knownoscopically” flat.
results of asymptotic extreme thedis]. In particular, such (i) If a<a,/(1+a,), o(L,V)/L increases withV.
statistics determine the probability of “chemical” fracture of However, there will be a marginé&br “critical” ) valueV, of
a finite solid submitted to an etching process. Furthermorethe volume for which the geometric correlations reach their
the distribution of the debris produced by the etching processiaximum possible valuer(L,V)=L. IncreasingV further,
can be regarded as a “chemical” fragmentation process. following Eg. (Al), the system enters the weak gradient

Also, the stability of the finalhardej interface with re- phase dominated by boundary effects.

VII. CONCLUSIONS

a1+ a,

Ot% e new system remains in the strong gradient “phase” for
any value ofV. The final corrosion front obeys the relation

(A1)
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APPENDIX B: THE “GLOBAL"” HISTOGRAM <p(t) is etched only if it is located at a depsh<t(r). In
fact, if y>t(r), the site would be reached by the solution
(i.e., checked by the dynamijcrhen the etching powes(t)

is weaker than its resistanceHence, it is necessary to dis-
tinguish three cases, in order to write the number of solid
%ites, with resistance ipr,r+dr], belonging to the global
Llirface at time.

(i) All the sites withr>p(0) checked by the dynamics
resisted the corrosion, and hence belong to the surface. Their
number is given bylr multiplied by the area spanned by the

h(r,t) front up to timet—1 (included, in addition to such sites on
the corrosion front at timé: (L t+L)dr.

L for r<p(t—1) (i) All the sites withp(t)<r<p(0) checked by the dy-
namics before timg(r) have been etched, whereas such sites
checked betweet{r) andt resisted. The number is given by
dr multiplied by the area spanned by the front between times
ce t(r) andt—1 (included, in addition to the sites on the front
(t+1)|_ for r>p(0) at t|met {L[t_t(r)]+L}dr -

(iii) All the sites withr <p(t) checked by the dynamics
(B1) have been etched. Only sites with such resistence belonging
to the corrosion front at timé contribute to the histogram.
Their number id_ dr.
One can then write

In the smooth regime, at each time stephe number of
surface sites which are createdLisand the number of dis-
solved sites ig(t)L. Consequently, at each time step, the
total number of surface sites increaseq by p(t)]L. More
precisely, we can see that these last sites affect only the hi
r part of the histogram. In fact, using E(®5) in Eq. (23),
one can write the explicit form di(r,t) for any time step in
the smooth regime:

={ (t—t")L for p(t'+1)<r=p(t'); t'<st-2

Note thath(r,t) is, at any time, a nondecreasing multistep
function of r. Each step differs from the previous one by

heightL.
It can be written also L for r<=p(t)
-2 h(r,t)=1{ L[t—t(r)+1] for p(t)<r<p(0) (B5)
h(r,t)=L 6(p(t—1)—r)+ > [(t—t)LO(r—p(t' +1)) L(t+1) for r=p(0).
t'=0
X O(p(t')—r)]+ (t+ 1)L 6(r —p(0)). (B2) Using the explicit formula fot(r) given by Eq.(B4), with r

replacingp, one has
In a similar way, the explicit functiorG(t) is obtained by

. . . 1
inserting Eq.(25) and Eq.(30) in Eq. (22): G(t):J h(r,H)dr=L[t+1—rp(0)(1—e V7],
0
t
1—exp< - —) (B6)
G(t)=L| t+1-p0)—— = (B3)  Where 7=[In(1/L/V)] *=V/L. Note that Eq.(B6) differs
1—ex _E from the rigorous Eq.(B3) only from the approximation
exp(—1/7)=1-1/7, which is valid in the present study,

where V/L>1. The normalized distribution at all time is
In order to obtain the normalized histogragir,t), one has  (r t)=h(r,t)/G(t), and fort>1 it can be written as
to divide Eq.(B1) by Eq.(B3). Because of the steplike shape
of Eq. (B1), ¢(r,t) will also be steplike. 1 for r=p(t)
A more physical derivation of a smooth function interpo- t =P
lating the steplikes(r,t) can be obtained under the same
approximate phenomenological approach leading to(8)q. $(r.1)=a(1) 1— Z[m p(0)—Inr] for p(t)<r=p(0)
Under these assumptions, the corrosion front is located at t
depthy at the timet=y when the solution has the corrosive 1 for r=p(0),
power p(t=y), wherep(t) is given by Eq.(3) [or alterna- (B7)
tively by Eq. (30)]. From Eqg.(3), one can deduce that the
solution attains the etching powpiat the timet(p) given by

_ In(p/p(0))
P = ha=uv)

where

[$1(t)]17*=1+[p(0)—p(t)]/In(p(t)/p(0))
(B4) _
zl—?p(O)[l—exp(—t/r)]. (B8)
when the front is at deptii=t(p). From this equation, it is
possible to infer that a site with random resistap¢e)<r Equation(B7) is the same as E¢31).




PRE 62

[1] U. R. Evans,The Corrosion and Oxidation of Metals: Scien-
tific Principles and Practical ApplicationgArnold, London,
1960.

[2] H. H. Uhlig, Corrosion and Corrosion Contro{Wiley, New
York, 1963.

[3] D. E. Williams, R. C. Newman, Q. Song, and R. G. Kelly,
Nature(London 350, 216 (1991).

[4] T. Nagatani, Phys. Rev. A5, 2480(1992.

[5] P. Meakin, T. Jasang, and J. Feder, Phys. Rev4& 2906
(1993.

[6] R. Reigada, F. Sagageand J. M. Costa, J. Chem. Phy€1,
2329(1994).

[7] L. Balazs and J-F. Gouyet, Physica217, 319(1995.

[8] L. Balazs, Phys. Rev. 54, 1183(1996.

[9] B. Sapoval, S. B. Santra, and Ph. Barboux, Europhys. 4#tt.
297 (1998; S. B. Santra and B. Sapoval, Physica266, 160
(1999.

[10] D. Stauffer and A. Aharony Introduction to Percolation

SURFACE HARDENING AND SELF-ORGANIZED ...

3115

Theory 2nd ed.(Taylor & Francis Ltd., London, 1991

[11] B. Sapoval, M. Rosso, and J. F. Gouyet, J. Pliyseance Lett.
46, L149 (1985.

[12] B. Sapoval, M. Rosso, and J. F. Gouyet,Tihe Fractal Ap-
proach to Heterogeneous Chemisteglited by D. Avnir(John
Wiley and Sons Ltd., New York, 1989

[13] H. Saleur and B. Duplantier, Phys. Rev. L&, 2325(1986.

[14] M. Rosso, J. F. Gouyet, and B. Sapoval, Phys. Re32B053
(19895; R. M. Zziff and B. Sapoval, J. Phys. A9, L1193
(1986.

[15] A. Baldassarri, A. Gabrielli, and B. Sapovainpublishegl

[16] K. J. FalconerFractal Geometry: Mathematical Foundations
and ApplicationgWiley, New York, 1990.

[17] T. Grossman and A. Aharony, J. Phys.28, L1193(1987).

[18] M. Marsili, J. Stat. Phys77, 733(1994; A. Gabrielli, R. Cafi-
ero, M. Marsili, and L. Pietronerabid. 84, 889 (1996.

[19] A. Gabrielli, R. Cafiero, M. Marsili, and L. Pietronero, Euro-
phys. Lett.38, 491(1997).



