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Surface hardening and self-organized fractality through etching of random solids
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When a finite volume of etching solution is in contact with a disordered solid, complex dynamics of the
solid-solution interface develop. If the etchant is consumed in the chemical reaction, the dynamics stop
spontaneously on a self-similar fractal surface. As only the weakest sites are corroded, the solid surface gets
progressively harder and harder. At the same time, it becomes rougher and rougher uncovering the critical
spatial correlations typical of percolation. From this, the chemical process reveals the latent percolation criti-
cality hidden in any random system. Recently, a simple minimal model was introduced by Sapovalet al. to
describe this phenomenon. Through analytic and numerical study, we obtain a detailed description of the
process. The time evolution of the solution corroding power and of the distribution of resistance of surface sites
is studied in detail. This study explains the progressive hardening of the solid surface. Finally, this dynamical
model appears to belong to the universality class of gradient percolation.

PACS number~s!: 64.60.Ak, 81.65.Cf, 68.35.Bs
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I. INTRODUCTION

Corrosion of solids has major economical consequen
@1,2#. It is also interesting from the point of view of theore
ical physics of random systems@3–7#.

The comprehension of the basic physical mechanisms
volved in corrosion implies the study of the dynamical ev
lution of the corrosion process and that of the morpholog
features of the corroded surface.

This paper presents a detailed study of a minimal mo
inspired by recent experiments on pit corrosion of alumin
thin films by an appropriate etching solution@8#. This two-
dimensional model is a simplified etching model. It was fi
introduced in@9#, where a preliminary numerical study ha
been developed. It provides a simple description for the
tion of a finite volume of a corroding solution on the surfa
of a disordered solid.

When an etching solution is in contact with an initial
flat surface of a disordered solid, it starts to corrode its we
est regions and the surface gets ‘‘harder.’’ However, at
same time, new regions are discovered which contain w
elements. Depending on the corrosion reaction mechan
different situations for this hardening process can occur.

Often the corrosive power of the solution is proportion
to an etchant concentration. If the etchant is consumed in
reaction, then the corrosive power of afinite volumeof solu-
tion decreases during the time evolution of the process.
the solid surface gets ‘‘harder and harder,’’ and the corrod
power of the solution gets ‘‘weaker and weaker,’’ the corr
sion process stops spontaneously in a finite time interval
this moment all the surface sites are ‘‘too hard’’ to be etch
by the solution.

It is this phenomenon which is studied both numerica
and analytically in this paper.

A most interesting aspect of this kind of dynamical co
rosion is that the final surface has a fractal geometry, sh
ing that the corrosion mechanism itself uncovers the spa
correlations among the strong sites belonging to the so
This is why this phenomenon is intimately related to per
PRE 621063-651X/2000/62~3!/3103~13!/$15.00
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lation properties of random systems. In that sense this k
of corrosion reveals a ‘‘latent’’ criticality embedded in an
random system.

The model reproduces qualitatively the same pheno
enology observed experimentally@8#. The dynamical evolu-
tion can be divided into two different regimes.

~i! In the first ~smooth! regime, the corrosion is well di-
rected and the front becomes progressively rougher
rougher. In our model this regime does not depend on
details of the discretization chosen, nor even on the fun
mental geometrical features of the lattice, such as the em
ding space dimension or the lattice coordination number

~ii ! In the second regime, the correlations revealed by
hardening process become important: the dynamics beco
locally isotropic generating a fractal front. This correspon
to a critical regime, directly related to the static percolati
transition on the same lattice.

The hardness of the final interface, which is related to
final corrosion power of the solution, depends on the exter
parameters such as the volume of the solution itself and
system size. When the volume of the solution is not t
large, one observes a geometrical scaling regime. This
gime corresponds to the scaling regime of a static percola
model known as ‘‘gradient percolation.’’ When the volum
is increased, the correlation length grows to reach the sys
size. Above this limit, the finite-size effects dominate t
behavior, and we do not study this case here.

II. MODEL

We first recall the two-dimensional etching model intr
duced in@9#. Its schematic is shown in Fig. 1.

~i! The solid is represented as a site lattice~triangular or
square!, of linear widthL and, eventually, infinite depth.

~ii ! A random numberr iP@0,1# „extracted from the flat
probability density functionp0(r )51 for r P@0,1#… is as-
signed to each solid sitei, representing its resistance to th
etching by the solution.r i does not depend on tim
~quenched disorder! nor on the site environment.
3103 ©2000 The American Physical Society
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3104 PRE 62A. GABRIELLI, A. BALDASSARRI, AND B. SAPOVAL
~iii ! The etching solution has a volumeV and is initially in
contact with the solid through the bottom boundary~see Fig.
1!. It contains an initial numberNet(0) of dissolved etchan
molecules.

Consequently, the initial concentrationC(0) of etchant in
the solution is given byC(0)5Net(0)/V. Calling Net(t) the
number of etchant molecules at timet, C(t)5Net(t)/V. At
each time step, the ‘‘etching power’’ of the solution~i.e., the
average ‘‘force’’ exerted by the solution on a solid surfa
particle! is supposed to be proportional toC(t): p(t)
5GC(t). Hereafter the assumptionG51 is made, without
loss of generality. It impliesC(t)[p(t). At time stept, all
the interface sites withr i,p(t) are dissolved and a particl
of etchant is consumed for each of these corroded solid s

Let us calln(t) the number of dissolved solid sites at tim
t. One can express many important dynamical quanti
throughn(t), or its time integralN(t), that is, the total num-
ber of corroded solid sites up to timet. The number of
etchant particles in the liquid will decrease as

Net~ t11!5Net~ t !2n~ t !5Net~0!2N~ t !, ~1!

and consequently the etching power of the solution is

p~ t11!5p~ t !2
n~ t !

V
5p~0!2

N~ t !

V
. ~2!

Note that, asp(t11),p(t), a site having resisted to etchin
at a certain time step will resist forever. Consequently,
part of the solid surface which can be etched at time stet
11 is restricted to the sites which have just been uncove
by the etching process at timet. We call this subset of sur
face the ‘‘active’’ part of the surface. After a given time ste
all the solid sites which have been previously explored
the solution are definitely ‘‘passive.’’ However, it may ha
pen that ‘‘passive’’ sites are disconnected from the bulk a
later time step if they are connected to the solid by we
sites.

A. Phenomenological description of the dynamics

A typical process at two intermediate times, and at
final time step, is shown in Fig. 2.

FIG. 1. Sketch of the etching dynamics in a square lattice:
sites 2,3,5 are etched at the first time step as their resistance
lower thanp(0). Consequently, the number of etchant particles
the solution decreases by three units. Att51, the new interface
sites are 7,8,10 if the solution can etch only the first-near
neighbor solid sites, or the whole second layer if the solution
also etch the second nearest neighbors in a diagonal direction
s.
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Some finite solid clusters are detached from the ‘‘in
nite’’ solid by the corrosion process. Consequently, at a
time, the ‘‘global surface’’ of the system is composed
both the finite clusters surfaces and the surface of the infi
solid, which will be called the ‘‘corrosion front.’’ Note that
in order to have a meaningful geometrical and physical d
nition of the solution space and of the connected solid
gions ~and then of the corrosion front!, one has to use the
so-called ‘‘dual’’ connection rules for solution and solid, r
spectively @10#. For example, on the square lattice, if th
solution etches both first and second nearest neighbors,
first-nearest-neighbor solid sites should be considered
connected. On the other side, if the solution etches only
first nearest neighbor, both first- and second-near
neighbor solid sites should be considered as connected
the triangular lattice, if the solution etches first nearest nei
bors, liquid and solid sites are considered to be connec
both by first nearest neighbors only.

Two remarks should be made.
~i! The corrosion front stays quite smooth at the beginn

of the dynamics~first snapshot of Fig. 2!. It becomes very
irregular only towards the end of the dynamics~third snap-
shot of Fig. 2! whenp(t) is close to the percolation thresho
pc on the same lattice@9#.

~ii ! The ‘‘active’’ part of the global surface is essential
restricted the etching front, since a site having resisted
corrosion at a certain time step will resist forever.

These observations are useful for a first analysis of
dynamics. Roughly speaking, if the front advances linea
the number of solid sites discovered at each time stepL
~the number of sites in each layer!. Hence, in this approxi-
mation, the number of etched sites isn(t)5L p(t). Using
this approximation one gets@from Eq. ~2!#

p~ t !5p~ t21!S 12
L

VD5p~0!S 12
L

VD t

. ~3!

This simple prediction is compared with the actual simu
tion behavior ofp(t) in Fig. 3. The agreement between th
simple prediction 3 and the initial decay ofp(t) is very good
for valuesp(t).pc , i.e., in thesmooth regimeof the dy-

e
are

t-
n

FIG. 2. Typical process represented at two intermediate t
steps and at the final one. The solid is represented in gray,
solution in white, and the finite-size solid clusters detached by
solution in black. The final solid surface is found to be fractal up
a characteristic scales.
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PRE 62 3105SURFACE HARDENING AND SELF-ORGANIZED . . .
namics. Whenp(t) is close topc , this approximation is no
longer valid and the dynamics enters thecritical regime.

A better derivation of Eq.~3!, and a more precise defin
tion of the two regimes, will be given below providing
deeper insight into the critical regime of the dynamics, wh
the surface becomes fractal and the dynamics slow down
stop.

Note that the main hypothesis for the derivation of Eq.~3!
consists in assuming that at each time step the numbe
new sites checked for corrosion is alwaysL, i.e., the whole
next solid layer. This is possible if the etching does not lea
large connected segments of uncorroded sites. In fact,
easy to show that the nonetched sites, the number of whic
approximatively@12p(t)#L, are almost isolated, the ave
age size of a segment of ‘‘survived’’ sites beinĝl &
51/p(t).

Interestingly, the present phenomenological appro
suggests an analogy between our dynamical etching m
and a static percolation model known as gradient percola
@9,11#. This will be discussed next.

B. Analogy with gradient percolation „GP…

The gradient percolation~GP! problem@11,12# can be for-
mulated in the following way: a random numberr iP@0,1# is
assigned to each site of a lattice ofx sizeL andy sizeh. A
constant gradient of occupation probability in they direction
is then imposed on the lattice:p(y)512y/h512y ¹p.
The occupation rule is that in each column a sitei is occu-
pied if and only if r i,p(y) ~see Fig. 4!.

In the first column (y50) the occupation probability is 1
while in the last one (y5h) it is zero. These two specia
layers individuate two percolating clusters in thex direction
of occupied~gray! and empty~white! sites~Fig. 4!. The ex-
ternal frontier of the connected occupied cluster is called
gradient percolation front@11#. This front is centered aroun
the layer withp(y) equal to the critical percolation thresho
pc characteristic of the lattice type. The front is fractal with

FIG. 3. Decay of the corroding powerp(t) in a triangular lattice
with p(0)51. The numerical evolution ofp(t) ~solid line! is com-
pared with the simple phenomenologic derivation of Eq.~3! ~dashed
line!. When the two curves separate, the dynamics enters the ‘‘c
cal regime’’ dominated by percolation effects.
n
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dimensionD f
(GP).1.75 up to a finite length~front width

sGP) which is a power law of the local gradient¹p51/h:

sGP;@¹p#2as
(GP)

, ~4!

where as
(GP).0.57. Note that D f

(GP).7/4 and as
(GP)

.1/D f
(GP). For this reason it was assumed thatD f

GP is equal
to the fractal dimension of the hull of the incipient infinit
percolating clusterD f

h57/4 in percolation theory@13,18#.
The demonstration of the identity of the equivalent ofas

(GP)

51/D f
(GP) in percolation theory is given in@13#.

In addition, the occupation probabilities of the front ran
in an intervalp(y).pc6Dp, whereDp scales with the gra-
dient as

Dp;@¹p#ap
(GP)

. ~5!

The exponentap
(GP) is related toas

(GP), asDp;s ¹p, which
implies, from Eq.~4!, ap

(GP)512as
(GP).

Because of its characteristic properties, GP has provid
powerful method to compute percolation thresholdpc @14#.

In this model, one can associate for each corroded
(x,y) the valuep(x,y) of the solution etching power at th
time of corrosion of that site@9#. In this way, a position-
dependent ‘‘field’’ of occupation probabilities~by the solu-
tion! is spontaneously generated. This is the physical l
with GP. In the smooth time regime the successive ac
zones are consecutive solid layers containing aboutL sites.
Consequently,p(x,y) depends only ony @p(x,y)5p(y)#.

The ‘‘active’’ zone at timet is then the whole layer a
depthy5t. From Eq.~3! one can then write

p~y!5p~0!S 12
L

VD y

. ~6!

This equation defines aself-organized gradient percolation,
where the value of the gradient depends on the parametL
andV as

ti-

FIG. 4. The gradient percolation model. The numbersr are cho-
sen randomly between 0 and 1. Each column has an occupa
probability p(y) ranging from 1 at the left side to 0 on the righ
side. A sitei is occupied ifr i,p(y). The occupied and empty site
are represented, respectively, in gray and white. Apart from isola
islands and lakes, gray and white sites form two distinct connec
regions. The bold line represents the separation between these
regions.
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~¹p!et;
L

V
. ~7!

III. SIMULATIONS AND NUMERICAL RESULTS

Extensive simulations have been performed, conside
triangular and square lattices, with first-nearest-neigh
~fnn! and second-nearest-neighbor~snn! ~diagonal! connec-
tions for the corrosion process. All simulations start w
p051.pc in order to observe clearly the transition towar
a critical regime, whenp(t).pc . Oncep0 is fixed, the pa-
rameter measuring the initial corroding ‘‘force’’ of the solu
tion is V5Net(0)/p0. The other fundamental parameter is t
transversal size of the solidL. All the data presented below
refer to 1000 different realizations of the quenched disord
for each choice of the parametersL andV.

A. Correlation length and ‘‘phase’’ diagram

In order to quantify the statistical properties developed
the dynamical process, the average thickness of the final
rosion front is measured. If$yi% are the depths of the point
i belonging to the corrosion front at timet, its average thick-
ness can be defined as

s5A1

I (
i 51

I

yi
22S 1

I (
i 5 i ,I

yi D 2

,

whereI is the length of the corrosion front.
The behavior of the final values at time t f as a function

of the ‘‘natural’’ gradientL/V is shown in Fig. 5~bottom!
for different fixed values ofL. Several observations can b
made.

~i! First, for sufficiently large values ofL/V ~right side of
Fig. 5!, s follows the scaling behavior

s;~L/V!2as ~8!

FIG. 5. Determination of the different corrosion behaviors. B
tom: behavior ofs as a function ofL/V for several sample size
~several values ofL). Top: the behavior of̂ pf& for the smaller
sample (L5500). Note that the maximum ofs corresponds to the
change of sign of̂ pf&2pc ~vertical arrow!.
g
r

r,

y
r-

with as50.5760.02. This confirms the idea that the fin
features of our dynamical etching model, at least in t
range ofL/V, are in the same universality class of GP on
the identificationL/V;¹p is done, i.e.,as5as

(GP).
~ii ! DecreasingL/V, s increases following the previou

scaling behavior@Eq. ~8!# until reaching values ofL/V for
which s.L. For even smaller values ofL/V, a deviation
from the aforementioned scaling law is observed. This dev
tion is characterized by a crossover to a region dominated
boundary effects. In this regimes seems to decrease slow
together with the gradientL/V, instead of increasing.

~iii ! Consequently, for a fixed value ofL, one can distin-
guish a ‘‘strong gradient’’ process, i.e., for values ofL/V in
which Eq. ~8! holds, and a ‘‘weak gradient’’ process fo
values ofL/V smaller than the crossover value. The cro
over between the two behaviors is marked by a marg
value ofL/V for which s.L. Note that for this value ofL/V
the spatial correlations extend all over the sample. Then
is a kind of ‘‘critical’’value of L/V.

Moreover one observes that^pf&,pc in the strong gradi-
ent regime and̂pf&.pc in the weak gradient regime, wher
^•••& means an average over different realizations of
disorder with fixed parametersL,V. In this way the equality
^pf&5pc can be used to identify the marginal~‘‘critical’’ !
value ofL/V for a fixed value ofL.

In the upper diagram of Fig. 5, the transition between
two regimes forL5500 is shown. This transition corre
sponds to a value ofL/V.231025 ~marked by the double
arrow crossing the two plots!.

This behavior ofs allows us to sketch a kind of ‘‘phase’
diagram for our model in the (L,V) parameter space~Fig. 6!.
The ‘‘critical’’ line s.L separates the two ‘‘phases.’’ Her
we use the terminology of phase transitions because in
the correlation length is equal to the front widths.

Since in the strong gradient ‘‘phase’’ Eq.~8! holds, the
scaling relation for the marginal line is

L;Vas/11as. ~9!

The relevance of this relation with respect to the extensiv
of spatial correlations in the ‘‘thermodynamic limit’’ is dis
cussed in Appendix A. In the following, we deal only wit

-
FIG. 6. ‘‘Phase’’ diagram in the parameters space~see text!.
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the strong gradient regime, leaving the detailed analysis
the weak gradient regime to further work.

B. Strong gradient etching

In order to study this regime, we focus on simulations
sizesL53000 andL55000, with^pf&,pc . Such values of
L are large enough, and at the same time they permit u
collect large statistics. A typical corrosion front is presen
in Fig. 7, where the conditionL@s is emphasized. Note tha
on scales larger thans, the corrosion front is almost flat
This indicates the statistical independence among nono
lapping regions of the surface of linear size larger thans.

As mentioned earlier,s is described by Eq.~8!. Similar to
s, other important properties follow simple scaling relatio
with the gradientL/V @9#.

The distance of the average value^pf& from pc follows
the scaling law:

pc2^pf&;S L

VD ap

with ap50.4660.02 ~10!

as shown in Fig. 8. Appendix A discusses the possibility
obtaining a value of̂ pf& arbitrarily nearpc , remaining in
the ‘‘strong gradient’’ region of Fig. 6. Starting from
couple (L0 ,V0) in the strong gradient phase, one can obt
it, for instance, performing the limitV→` on any line
(L/L0)5(V/V0)a with as /(11as)<a,1.

FIG. 7. Typical final corrosion front for a simulation in th
strong gradient phase. Note thats!L. Different nonoverlapping
almost independent regions are identified by numbers. The num
n5L/s of almost independent regions is relevant for the study
extremal quantities@15#.

FIG. 8. Scaling behavior ofpc2^pf&. Note that, identifyingL/V
with ¹p of gradient percolation, one obtains the same values of
exponentap50.4660.02.
of

f

to
d

r-

f

n

Moreover, the average number of corrosion front sites
column~see Fig. 9! ^I (t f)&/L is found to follow a power law
of the form

^I ~ t f !&
L

;S L

VD 2a I

with a I50.4560.02. ~11!

The fractal dimensionD f of the corrosion front was mea
sured~up to the scales) using the box-counting@16# algo-
rithm. In this wayD f51.75360.005 is found~see Fig. 10!.
Note that it is compatible with the value 7/4 of GP.

In the early papers about this etching process@9# D f
.1.62 was measured. This different value was due to fin
size effects. The present simulations are almost 400 tim
larger than those previously reported in@9# ~the largest value
of the parameters beingL533104 and V553109). This
achievement is important to assert that the exponents c
acterizing the final corrosion front belong to the universal
class of gradient percolation. While^pf& depends on the lat
tice geometry, aspc changes, the values of the exponen
remain the same.

er
f

e

FIG. 9. Scaling behavior of the average number of sites
column in the final corrosion front.

FIG. 10. Box-counting determination of the fractal dimensi
D f of the corrosion front. The value ofD f51.75360.005 is found
fitting for values ofe ranging from a few lattice distances to th
front width s @in this cases'3000, i.e., ln(s)'8#.
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Nevertheless, note that the measured fractal dimensio
the corrosion front can be reduced to4

3 , if one does not use
the right ‘‘dual’’ connectivity criterion introduced above
This is the so-called Grossmann-Aharony effect in perco
tion @12,17#. This effect can explain the reduced fractal d
mension~4/3! measured in the real corrosion experime
@7#, due to insufficient image resolution. For example, on
triangular lattice~where the solution etches only fnn!, if the
resolution does not distinguish first and second nea
neighbors, the measured fractal dimension is 4/3.

The average critical timetc , defined byp(tc)5pc , and
the difference between the arrest timet f of the dynamics and
tc itself, are measured for different values of the gradi
L/V. For the first one, the following simple behavior is foun
~see Fig. 11!:

^tc&;~L/V!2a tc with a tc
50.99860.001. ~12!

As we shall see in the following, this is a direct conseque
of the linear properties of the smooth dynamical regime@Eq.
~3!#.

Finally, for t f one has~see Fig. 12!

FIG. 11. Scaling behavior of the critical timetc for which
p(tc)5pc : ^tc&;(L/V)2a tc with a tc

50.99860.001.

FIG. 12. Scaling behavior of̂t f&2^tc& for different values ofL.
Inset: the dependence onL for L/V fixed is presented.
of

-

s
e

st

t

e

^t f&2^tc&;~L/V!2a t f with a t f
'0.55. ~13!

However, for ^t f&2^tc&, a further dependence onL is ob-
tained ~see the inset of Fig. 12!. In particular, changingL
with L/V fixed, the quantitŷ t f&2^tc& is found to depend
linearly on lnL. This behavior is connected to the ‘‘extrem
al’’ nature of t f and is not studied here@15#.

C. Scaling relations

The exponentsas , ap , a I , and D f are not indepen-
dent. At first, note that, within the present numerical pre
sion,

as5
1

D f
~14!

as in GP@11#.
Identifying the width s with the horizontal correlation

length, the average number within a correlated region sc
assD f because of the fractality on smaller scales. Since
horizontal size of the solid isL, the average number of dis
tinct correlated regions will beL/s. Consequently, one ca
write

^I ~ t f !&;
L

s
sD f ,

which implies

^I ~ t f !&
L

;sD f21;S L

VD 2as(D f21)

. ~15!

From Eqs.~11!, ~14!, and~15! one then obtains the following
scaling relation:

a I5as~D f21!5
D f21

D f
, ~16!

which is consistent with the measurement ofa I in Eq. ~11!.
Exploiting the analogy betweenL/V and the gradient¹p

in GP, another interesting relation among exponents can
derived. From the relationDp[pc2pf'¹p•s, one gets

ap512as5
D f21

D f
. ~17!

Note that this impliesap5a I in d52. In fact, the assump
tion that the number of different correlated regions scales
L/s is valid only in d52.

IV. DYNAMICAL EQUATIONS AND THEORETICAL
RESULTS

In this section we present an analytical derivation of t
dynamical evolution ofp(t) and the distribution of the sur
face resistances. This time-dependent distribution charac
izes the evolution of ‘‘hardening’’ properties of the surfac
To this aim, the histogramh(r ,t) is introduced. The quantity
h(r ,t)dr measures the number of global surface sites w
random resistance in the interval@r ,r 1dr# at time t. By
definition, the number of sites in the global surfaceG(t) is
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PRE 62 3109SURFACE HARDENING AND SELF-ORGANIZED . . .
simply the total integral of the histogram:

G~ t !5E
0

1

h~r ,t !dr. ~18!

On the other side, the number of surface sites being corro
at time t by the solution will be

n~ t !5E
0

p(t)

h~r ,t !dr, ~19!

as n(t) is the number of sites in the global surface withr
,p(t). Note that Eq.~19! links h(r ,t) directly to p(t)
through Eq.~2!, which can then be rewritten as

p~ t11!5p~ t !2

E
0

p(t)

h~r ,t !dr

V
. ~20!

Let us callm(t) the number of active sites at timet11: i.e.,
the new sites entering the global surface as a consequen
the corrosion of the set ofn(t) sites. Then the setm(t) is the
active zoneat time t11. One can definev(t)5m(t)/n(t).
Therefore,v(t) is the number of new active sites per etch
site at time t. As shown below, the quantityv(t) is the
fundamental parameter relating the ‘‘geometry’’ to t
‘‘chemistry’’ of the system at timet. At each time step one
can write

G~ t11!5G~ t !2n~ t !1m~ t !, ~21!

or, using both Eq.~19! and the definition ofv(t),

G~ t11!5G~ t !1@v~ t !21#E
0

p(t)

h~r ,t !dr. ~22!

Considering only sites in@r ,r 1dr#, one can write

h~r ,t11!5h~r ,t !2h~r ,t !u@p~ t !2r #

1v~ t !E
0

p(t)

h~r 8,t !dr8, ~23!

whereu(x) is the Heavyside step function. In Eq.~23!, the
second term on the right-hand side represents the numb
sites etched at timet @a surface sitei is etched with probabil-
ity 1 if r i,p(t)#. The third term is the contribution toh(r ,t)
due to the new active zone. It is based on the fact that e
new site has completely random resistance to etching;
probability that it belongs to the interval@r ,r 1dr# is simply
dr @as p0(r )51#. In principle, knowing the behavior o
v(t), one can solve the system given by Eqs.~20! and~23!,
characterizing in this way the dynamical evolution of t
corrosion power and of the resistance of the solid surfac

Before going on with calculations, it is important to o
serve thath(r ,0)5L ;r P@0,1# @asp0(r )51 and the initial
surface is a layer of sites of lengthL#. On the other hand, fo
r ,p(t), Eq. ~23! reduces to

h~r ,t11!5v~ t !E
0

p(t)

h~r 8,t !dr8. ~24!
ed

of

of

ch
e

Equation~24! and the initial conditionh(r ,0)5L imply that
at each time forr ,p(t21), h(r ,t) is independent ofr and
can be written as

h~r ,t !5L )
t850

t21

„v~ t8!p~ t8!… for r ,p~ t21!. ~25!

Using this expression in Eq.~20!, the following equation is
obtained:

p~ t11!5p~ t !F12
L

V )
t850

t21

„v~ t8!p~ t8!…G . ~26!

Equation~26! makes evident the strong dynamical link b
tween the geometry@v(t)# and the chemistry@p(t)# of the
system.

In order to examine the calculations further, it is nece
sary to make some hypotheses on the behavior ofv(t).

As previously mentioned, the dynamical evolutions c
be divided into two regimes:~i! a firstsmooth regime, which
is referred to the time scale at whichp(t) is larger thanpc ;
~ii ! a secondcritical regime, which is referred to the time
scale at whichp(t).pc .

This partition of the dynamics into two regimes is direct
connected to percolation theory@10#, as shown below.

A. Smooth regime

If one considers all the lattice sites withr ,p(t) for
p(t).pc , they form both a set of a few finite-size cluste
and an infinite percolating and homogeneous~not fractal!
cluster@10#. Consequently, the intersection between the g
bal solid-solution surface and this set is made of a la
number of sites. The largerp(t), the larger the intersection
This intersection is merely the set ofn(t) sites to be dis-
solved at that time step.

Since n(t)@1 @and thenm(t21).n(t)@1 also#, one
can use the law of large numbers to relaten(t) to m(t21):

n~ t !5p~ t !m~ t21!. ~27!

For the same reason one expects small fluctuations aro
these values. From Eq.~27! and the definition ofv(t), one
obtains

m~ t !5v~ t !p~ t !m~ t21!. ~28!

Because of the percolation properties forp.pc , which are
related to the previous argument, one expects

Um~ t !2m~ t21!

m~ t21!
U!1.

Hence we obtain the relation

v~ t !.
1

p~ t !
. ~29!

This equation introduces an important relationship betw
the fundamental ‘‘chemical’’ parameterp(t) and the ‘‘geo-
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metrical’’ and ‘‘dynamical’’ parameterv(t). Inserting Eq.
~29! into Eq.~26!, one recovers Eq.~3!, which can be rewrit-
ten as

p~ t !5p~0!expS 2
t

t D ~30!

with t521/ln(12L/V).V/L (L@V). From Eq.~30! one has
tc.V/L ln(p0 /pc);(L/V)21. This confirms the numerical re
sult found in Fig. 11 and expressed by Eq.~12!. Note that the
behavior given by Eq.~30! is independent of the space d
mension and of the coordination number of the lattice. T
behavior is, however, valid only up to the time at whi
p(t).pc . After this time the hypothesis to deduce Eq.~30!,
and in particular the possibility of using the law of larg
numbers, breaks because of the geometrical constraints g
by the percolation properties of random numbers on a latt

Using Eq. ~30!, one can derive rigorously the shape
h(r ,t) at any time stept or of its normalized versionf(r ,t)
@i.e., *0

1dr f(r ,t)51#. f(r ,t) is obtained by dividingh(r ,t)
by G(t). Technical calculations are reported in Appendix
We provide here directly the result

f~r ,t !.f1~ t !

35
1

t
for r<p~ t !

12
t

t
@ ln p~0!2 ln r # for p~ t !<r<p~0!

1 for r>p~0!,

~31!

where

@f1~ t !#21511@p~0!2p~ t !#/ ln„p~ t !/p~0!…

512
t

t
p~0!@12exp~2t/t!#. ~32!

Equation~31! can be rewritten, in terms ofp(t) instead oft,
as follows:

f~r ,t !.f1~ t !

35
1

t
for r<p~ t !

12
ln„r /p~0!…

ln„p~ t !/p~0!…
for p~ t !<r<p~0!

1 for r>p~0!.

~33!

B. Critical regime

For p(t)5pc , one has~in the limit L→`! a marginal
critical case in which the set of lattice sites withr ,p(t)
form finite-size clusters of any size and an infinite frac
percolating cluster. Finally forp(t),pc , the set of lattice
sites with r ,p(t) forms only finite-size clusters. For thi
reason, even if at such timet the intersection between th
global solid surface and the set of lattice sites withr ,p(t) is
s

en
e.

.

l

not empty, it becomes depleted after a finite number of ti
steps. The average number of time steps after which the
namics stops will be a function of the system parameterL
andV @Eq. ~13!#. At this time the corrosion dynamics stop
because the intersection between the global surface and
set of lattice sites withr ,p(t) is empty. This explains why
the final corrosion front is fractal with a fractal dimensionD f
and a characteristic size~thickness! s. D f5

7
4 is the hull

fractal dimension of the finite clusters formed by the latti
sites withr ,p(t f) and s is the characteristic size of thes
clusters. Finally, the same argument explains why each
ponent, characterizing the above introduced scaling relat
~apart from those abouttc and t f), is directly connected to
the exponents of GP.

From the above argument, it is important to note that
not empty, the active zone at a timet.tc is composed of a
small and fluctuating number of sitesm(t). This implies that
alson(t) is small and strongly fluctuating. Consequently, t
arguments developed in dealing with the smooth time
gime, based on the law of large numbers and small fluct
tions, are no longer valid:v(t) becomes a strongly fluctuat
ing quantity. These critical fluctuations are related to t
fractal morphology of the critical phase of percolation. W
can say that the arrest of the etching dynamics is due to
of these big fluctuations ofv in which no site of the active
zone hasr ,p(t).

All these features are shown in Fig. 13, wherev(t) and
1/p(t) are shown as functions of time. It is important to no
that, whereasv(t) is a strong fluctuating quantity in th
critical time regime,p(t) is always smooth. In fact,p(t) can
be written@Eq. ~2!# as

p~ t !5p~0!2
1

V (
k50

t21

n~ t !.

Consequently,p(t) can be seen, apart from prefactors, as
time integral ofn(t), which is a limited function of time and
thenp(t) is continuous. Moreover, Fig. 13 shows that in t
critical time regime the equalityv(t).1/p(t) is valid only
‘‘in average:’’

FIG. 13. Comparison betweenv(t) ~dots! and 1/p(t) ~thick
line! as functions of time.
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v~ t !.
1

p~ t !
, ~34!

wherev(t) means the average ofv over a sufficiently large
time interval aroundt in the critical time regime. In order to
justify the smooth behavior ofp(t) in spite of the fluctua-
tions of v(t), one can use Eq.~26!. In the continuous time
limit, it can be rewritten as

dp~ t !

dt
52

L

V
p~ t !expF E

0

t

dt8@ ln p~ t8!1 ln v~ t8!#G .
~35!

Since the fluctuatingv(t) appears in the integral term of th
exponential of the right-hand side of Eq.~35!, one expects
p(t) to be regular.

In order to understand why one hasv(t).1/p(t) also in
the critical regime, one has to analyze the behavior of ti
average,

v~ t ![
1

Dt (
t85t2Dt/2

t1Dt/2

v~ t8!.

Using the definition ofv(t), one can write

v~ t !5
1

Dt (
t85t2Dt/2

t1Dt/2 Fm~ t821!

n~ t8!

m~ t8!

m~ t821!
G . ~36!

From Eq.~27! one has directly

(
t85t2Dt/28

t1Dt/2

@m~ t821!/n~ t8!#51/p~ t !.

From this observation and supposing that the quan
m(t8)/m(t821) oscillates symmetrically around 1, one e
pects Eq.~34!. Before proceeding, it is worth noting that th
variation ofp(t) during the critical time regime, as shown b
Eq. ~10!, is very small. From this one has approximativel

v~ t !.1/pc . ~37!

Equations~34! and~37! are very important because they pr
vide both a ‘‘physical’’ and a ‘‘geometrical’’ meaning to th
critical threshold of percolation in a given lattice~an analo-
gous relation for invasion percolation was found in@18,19#!.

In order to clarify the geometrical effect onv(t), it is
important to observe that, following Eq.~29! and Eq.~30!,
v(t) would increase to infinity. Clearly this is not possible
a finite dimensional lattice with a finite coordination numb
For instance, in a 2d site square lattice with fnn connection
v must always be smaller than 3. Moreover, as seen ab
the percolation theory introduces a stronger constraint
bidding p(t) to go well belowpc . Note thatpc is always
larger than the inverse of the coordination number of
lattice @10#. They are equal only in the Bethe lattice witho
loops. Consequently, in order to use Eq.~26! to predict the
behavior ofp(t), one has to take into account both the b
havior given by Eq.~34! and these geometrical constrain
In order to show this, we have made the approximat
v(t)51/psim(t) in Eq. ~26!, wherepsim(t) is the simulation
outcome forp(t) ~and then it includes automatically the ge
e

y

.

e,
r-

e

-
.
n

metrical constraint!. The solutionp(t) obtained by solving
numerically Eq.~26! is very near topsim(t) itself.

Because of the strong fluctuations, the purely analyti
study of this critical regime is difficult. For this reason w
developed only an approximated mean-field approach by
posing only the geometrical constraint with the followin
simple approximation:

v~ t !51/pc ~38!

in this critical time regime. This is a kind of mean-field a
proximation as the fluctuations ofv(t) are neglected. Insert
ing the relation~38! into Eq. ~26!, one can write

p~ t11!5p~ t !F12
L

V
pc

2t )
t850

t21

p~ t8!G ~39!

with the initial conditionp(tc)5pc and t.tc . In order to
solve Eq.~39!, one can consider the continuous limit whic
is equivalent to takingv(t)51/pc in Eq. ~35!:

dp~ t !

dt
52

L

V
p~ t !expF E

0

t

dt8S ln
p~ t8!

pc
D G . ~40!

This equation can be solved exactly, and this solution is w
approximated by

pc2p~ t !.pcA2L

V

expSA2L

V
~ t2tc!D 21

expSA2L

V
~ t2tc!D 11

, ~41!

where tc is the time at whichp(t)5pc . From Eq.~41! we
can see that in thet→` limit one has

pc2pf;AL

V
. ~42!

In spite of the rough approximation, we obtain a good a
proximation of the numerical result of Eq.~10! ~see also Fig.
8!, therefore this ‘‘mean-field’’ result provides a goo
approximation.

Moreover, since the time constant of Eq.~41! is t8
;AV/L, it is argued that the average timet f at which the
dynamics spontaneously stop obeys the following sca
law:

t f2tc;t8;AV

L
.

Also, this is a reasonable approximation with respect to
simulation behavior@Eq. ~13! and Fig. 12#. We can see tha
Eq. ~42! can be interpreted as the product of theDp in single
time steps (Dp;L/V) multiplied by the average number o
time steps necessary to stop the dynamicst f2tc;AV/L.

V. FINAL HISTOGRAMS AND SURFACE HARDENING

The surface hardening can be described by conside
both the histogram of the global surface and that of the c
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rosion front. One first observes that the number of corro
sites in the critical regime is much smaller than the num
of sites which have been etched in the smooth regime. T
means that the global surface is dominated by sites belon
to finite clusters. As a consequence,f(r ,t f) is well approxi-
mated by the linear regime behavior given in Eq.~B7! with
t5t f andp(t)5pf ~see Fig. 14!.

One observes good agreement between theory
numerics.

The global histogram describes the hardening phen
enon of the global surface which includes finite-size clust
detached by the etching process at various time steps o
dynamics. The increasing behavior off(r ,t f) for r .pc is
due to the fact that the majority of surface sites belonging
finite islands have been discovered at intermediate time s
when p(t).pc . This implies that their resistance is we
abovepc .

The hardening of the corrosion front is described by
normalized distributionfF(r ) of site resistances. It has bee
measured by numerical simulation for several types of
tices. The numerical results are shown in Fig. 15.

As discussed above, the final front is more resistan
etching than the original native surface. This is shown in F
15, giving the histogram of the front resistances. In first
proximation it is a step function aroundr 5pc . This con-
firms the hypothesis, derived by GP, that the final corros
front corresponds to the hull of percolation clusters withp
5pf .

This effect could possibly be used practically in was
management problems. Consider, for instance, a system
taining dangerous compounds with random resistance
etchants present in the environment. If in natural circu
stances it comes in contact with etchants, even with a w
etching powerp0,pc , then dangerous materials can be d
fused in the environment.

But one can think to apply to the system a previous et
ing treatment withp08.pc , in an artificially controlled situ-
ation. In this case the final surface contains only sites w
r .pc . Then the treated surface will resist forever any fu
ther natural attack withp,pc , with no danger of leaks in

FIG. 14. Normalized histogram of site resistances belonging
the final global surface. Circles represent the result of numer
simulations and the solid line the theoretical prediction detailed
Appendix B.
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nature. This could be called a random ‘‘Darwinian’’ sele
tion of a strong surface: once selected with a finite solut
with p.pc , the surface resists for ever further etching w
p0,pc whatever the volume of the solution.

VI. DISCUSSION

Several properties and limitations of this model should
discussed. This depends on the nature of what has been
scribed here as a ‘‘site.’’ One can think of a site as being
atom or a small group of atoms. For example, if one cons
ers a random solid~such as a glass!, the different local ran-
dom environments will cause random local rates for atom
dissolution rather than random probabilities. The possi
application of the above model is then restricted to situati
where the choice of suitable time intervals makes it poss
to separate ‘‘very resistant’’ and ‘‘very weak’’ sites. Th
implies a transposition of the distribution of local rates into
distribution of site resistances.

But a site could also be a semimacroscopic entity like
small crystallite protected by a randomly resistive surface
the case of corrosion experiments by Bala`zs @8#, it is be-
lieved that randomness may be attributed to the random
ture of the oxide layer which spontaneously grows on pre
ously etched aluminum crystallites. The disorder stud
herein occurs if the random resistances to etching appear
after oxidation of newly discovered crystallites. Although t
disorder appears dynamically, once created it is quenche

It is worth noting that a different kind of process wou
lead to the same description. Consider, for example, a c
where crystallite oxidation and corrosion are two possi
processes in competition when a site is uncovered. If
probability p associated to the corrosion is proportional
the global etchant concentration, then a probability 12p
should be associated to oxidation~and then passivation!. In
order to decide the etching or passivation of a given sitei, a
random numberr i is thrown. If r i is smaller thanp, the site
is corroded, otherwise it is defintively passivated. Ther i
numbers define a stochastic process which would give

o
al
n

FIG. 15. Normalized histogram of the corrosion front res
tances. One can notice that simple step functions are found for
three different lattices studied. The discontinuities occur very n
the percolation thresholds.



pe
t o
u
r
.

of
r

hi
ll
s
t

er
se
ta

t
t

on

o-
-
an
b

ds
ib
n

ty
o

ca

-
te
p

io
d

nt
s

e

on
of
de
e

su
h
-
w

of
or
es
.

nd
ing
Eu-
d

-

re
ec-

,
h a

for

d

ase

g

-

eir

nt

PRE 62 3113SURFACE HARDENING AND SELF-ORGANIZED . . .
same dynamical behavior. Of course the hardening pro
ties would be different in that case. From a statistical poin
view, it means simply that we can equivalently formulate o
model as a deterministic dynamics with quenched disorde
as a stochastic dynamics without quenched randomness

VII. CONCLUSIONS

In this paper we have discussed several aspects
simple model for the etching of a two-dimensional diso
dered system by a finite volume of corroding solution. T
has been done both theoretically and verified numerica
The dynamics correspond to the disappearance of weak
face sites which at the same time uncovers new sites. As
etching process consumes the etchant, the etching pow
the solution decreases and the surface resistance increa
the point where the process stops spontaneously. One ob
a kind of ‘‘equilibrium’’ or static situation in which the dy-
namics is stopped. This static state is characterized by
fact that the surviving interface sites have a resistance to
etching which is larger than the final valuepf of the solution
etching power which is on the order of the percolati
thresholdpc .

An analytical description of the time behavior of the s
lution etching powerp(t) and of the distribution of resis
tances on the total interface has been introduced. This
lytical approach indicates why and how the dynamics can
divided into two regimes. The first initial period correspon
to a classical, or superuniversal, regime. It can be descr
with precision by a mean-field approximation. The seco
regime is a critical regime related to percolation criticali
The final connected interface is constituted by a collection
fractal interfaces up to a certain characteristic depth or s
s. The fractal dimension is found to be very close toD f
57/4. The differencepc2pf betweenpc and the final etch-
ing power pf and the widths are both linked to the geo
metrical and external parameters characterizing the sys
via simple scaling relations. These properties can be sim
explained by relating the model to the gradient percolat
model: identifying the ratioL/V between the size of the soli
and the volume of the solution with the gradient¹p which
characterizes the scaling properties of GP. After this ide
fication, it has been shown that our etching model belong
the GP universality class, and that the exponents can be
plained through percolation theory.

An important result of this approach is the identificati
of the meaning ofp(t) as the inverse of the mean number
new interface sites uncovered by each etched site. This i
tification in particular is very important in relation to th
static final situation in whichp(t).pc , as it provides the
physical meaning of the percolation critical threshold.

Several further developments of these studies can be
gested. The statistics of other observable quantities, suc
the arrest time of the processt f or the maximal depth at
tained by the solution, can be studied and related to kno
results of asymptotic extreme theory@15#. In particular, such
statistics determine the probability of ‘‘chemical’’ fracture
a finite solid submitted to an etching process. Furtherm
the distribution of the debris produced by the etching proc
can be regarded as a ‘‘chemical’’ fragmentation process

Also, the stability of the final~harder! interface with re-
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spect to external perturbations~as, for example, fluctuation
of the etching powerpf) should be of interest.
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APPENDIX A: THERMODYNAMIC LIMIT

In light of what was written about the ‘‘phase’’ diagram
one can discuss the thermodynamic limit. Let us start wit
couple of external parameters (L0 ,V0) in the strong gradient
‘‘phase’’ for which s(L0 ,V0)!L0, and negligible boundary
effects. If one changesL ~horizontal size of the solid! andV
~volume of the solution! by satisfying the relation

L

L0
5S V

V0
D as/11as

,

the new system remains in the strong gradient ‘‘phase’’
any value ofV. The final corrosion front obeys the relation

s~L,V!

L
5

s~L0 ,V0!

L0
,

i.e., the new system is geometrically ‘‘similar’’ to the ol
one.

Let us now study what happens changing (L,V) following
the relation

L

L0
5S V

V0
D a

~A1!

with aÞas /(11as).
~i! If a.1, the system stays in the strong gradient ph

for any value ofV, but s(L,V) is a decreasing function ofV
and in the thermodynamic limit (V→`), the final corrosion
front is ‘‘microscopically’’ flat.

~ii ! If as /(11as),a<1, the system stays in the stron
gradient phase. Moreover,s(L,V) increases withV ~it is
infinite in the thermodynamic limit!, but s(L,V)/L
,s(L0 ,V0)/L0. Hence the new corrosion front is not ‘‘simi
lar’’ to the old one, and in the limitV→` it becomes ‘‘mac-
roscopically’’ flat.

~iii ! If a,as /(11as), s(L,V)/L increases withV.
However, there will be a marginal~or ‘‘critical’’ ! valueVc of
the volume for which the geometric correlations reach th
maximum possible value:s(L,V).L. IncreasingV further,
following Eq. ~A1!, the system enters the weak gradie
phase dominated by boundary effects.
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APPENDIX B: THE ‘‘GLOBAL’’ HISTOGRAM

In the smooth regime, at each time stept, the number of
surface sites which are created isL, and the number of dis
solved sites isp(t)L. Consequently, at each time step, t
total number of surface sites increases by@12p(t)#L. More
precisely, we can see that these last sites affect only the
r part of the histogram. In fact, using Eq.~25! in Eq. ~23!,
one can write the explicit form ofh(r ,t) for any time step in
the smooth regime:

h~r ,t !

55
L for r ,p~ t21!

. . .

~ t2t8!L for p~ t811!,r<p~ t8!; t8<t22

. . .

~ t11!L for r .p~0!.

~B1!

Note thath(r ,t) is, at any time, a nondecreasing multist
function of r. Each step differs from the previous one b
heightL.

It can be written also

h~r ,t !5L u„p~ t21!2r …1 (
t850

t22

@~ t2t8!Lu„r 2p~ t811!…

3u„p~ t8!2r …#1~ t11!L u„r 2p~0!…. ~B2!

In a similar way, the explicit functionG(t) is obtained by
inserting Eq.~25! and Eq.~30! in Eq. ~22!:

G~ t !5LF t112p~0!

12expS 2
t

t D
12expS 2

1

t D G . ~B3!

In order to obtain the normalized histogramf(r ,t), one has
to divide Eq.~B1! by Eq.~B3!. Because of the steplike shap
of Eq. ~B1!, f(r ,t) will also be steplike.

A more physical derivation of a smooth function interp
lating the steplikef(r ,t) can be obtained under the sam
approximate phenomenological approach leading to Eq.~3!.
Under these assumptions, the corrosion front is locate
depthy at the timet5y when the solution has the corrosiv
power p(t5y), wherep(t) is given by Eq.~3! @or alterna-
tively by Eq. ~30!#. From Eq.~3!, one can deduce that th
solution attains the etching powerp at the timet(p) given by

t~p!5
ln„p/p~0!…

ln~12L/V!
~B4!

when the front is at depthy5t(p). From this equation, it is
possible to infer that a site with random resistancep(0),r
gh

.

at

,p(t) is etched only if it is located at a depthy,t(r ). In
fact, if y.t(r ), the site would be reached by the solutio
~i.e., checked by the dynamics! when the etching powerp(t)
is weaker than its resistancer. Hence, it is necessary to dis
tinguish three cases, in order to write the number of so
sites, with resistance in@r ,r 1dr#, belonging to the global
surface at timet.

~i! All the sites with r .p(0) checked by the dynamic
resisted the corrosion, and hence belong to the surface. T
number is given bydr multiplied by the area spanned by th
front up to timet21 ~included!, in addition to such sites on
the corrosion front at timet: (L t1L)dr.

~ii ! All the sites withp(t),r ,p(0) checked by the dy-
namics before timet(r ) have been etched, whereas such si
checked betweent(r ) andt resisted. The number is given b
dr multiplied by the area spanned by the front between tim
t(r ) andt21 ~included!, in addition to the sites on the fron
at time t: $L@ t2t(r )#1L%dr.

~iii ! All the sites withr ,p(t) checked by the dynamic
have been etched. Only sites with such resistence belon
to the corrosion front at timet contribute to the histogram
Their number isL dr.

One can then write

h~r ,t !5H L for r<p~ t !

L@ t2t~r !11# for p~ t !<r<p~0!

L~ t11! for r>p~0!.

~B5!

Using the explicit formula fort(r ) given by Eq.~B4!, with r
replacingp, one has

G~ t !5E
0

1

h~r ,t !dr5L@ t112tp~0!~12e2t/t!#,

~B6!

where t5@ ln(1/L/V)#21.V/L. Note that Eq.~B6! differs
from the rigorous Eq.~B3! only from the approximation
exp(21/t).121/t, which is valid in the present study
where V/L@1. The normalized distribution at all time i
f(r ,t)[h(r ,t)/G(t), and fort@1 it can be written as

f~r ,t !.f1~ t !5
1

t
for r<p~ t !

12
t

t
@ ln p~0!2 ln r # for p~ t !<r<p~0!

1 for r>p~0!,
~B7!

where

@f1~ t !#21511@p~0!2p~ t !#/ ln„p~ t !/p~0!…

512
t

t
p~0!@12exp~2t/t!#. ~B8!

Equation~B7! is the same as Eq.~31!.
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